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Abstract 

The key problem of using differential privacy is controlling sensitivity. Almost all papers focus on processing sensitivity, but the efficiency 

of the algorithm is also very important. Therefore, this paper hopes to improve efficiency as much as possible under the premise of ensuring 

utility. In this paper, decomposition and reconstruction via flattening kd-tree (DRF) is proposed based on differential privacy, which applies 

a flattening kd-tree to process the adjacency matrix. Firstly, by adjusting the vertex labeling, the set of labeling form dense areas and sparse 

areas as much as possible in the adjacency matrix. The adjacency matrix is then decomposed by flattening kd-tree, and each sub-region is 

anonymously operated using differential privacy. Finally, each subregion is reconstructed to obtain a complete anonymous graph. At the end 

of the article, experiments are conducted over real-world datasets. According to the results, DRF has a significant improvement in efficiency, 

the time complexity of DRF is 𝑶(|𝑽|), and DRF has a good performance in degree distribution, degree centrality and cutting query. 
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1. Introduction 

 

With the continuous development of computers and related technologies, graph data has been more and more widely used. It 

can satisfy many needs of data analysis, but many information disclosure cases in the real-world show that privacy security is 

a very important issue when graph data is published. 

 

K-anonymity [1-2], l-diversity [3], t-closeness [4] and clustering [5] have their own advantages, but they are poor in 

resisting background knowledge attacks. Differential privacy [6] has strict mathematical protection level and leakage risk 

quantification, which is used to defend against background knowledge attacks. However, the direct use often leads to large 
errors by great sensitivity, so some processing is needed to control sensitivity. Spatial decomposition is a very effective way to 

control sensitivity. Spatial decomposition is categorized as data-independent and data-dependent types. The data-independent 

decomposition is a logical dataset partition by using the data structure directly. Xiao [7] proposed the HKD-tree partitioning 

method, which first uses the grid to divide the data and then separately adds noise, but this method is not suitable for 

inhomogeneous data. Cormode [8] analyzes various hierarchical trees in detail, and then presents a differential privacy 

hierarchy model for large interval count queries. Qardaji [9] proposed two methods for partitioning grid structures: UG 

(Uniform Grid) and AG (Adaptive Grids). Although the error equalization problem can be effectively solved, it is possible that 

the accuracy of the result is affected by excessive noisy. Zhang [10] proposed PrivTree, which combines the noisy count of 

leaf nodes with the noisy count of non-leaf nodes to respond to queries. This method solves the problem that the noise of tree 

structure depends on the height of the tree. 

 

The number of Tree structures is the most in the data-depends, and those partitioning methods are affected by data 
distribution. Inan A.[11] proposed kd-SM based on kd-tree in 2010. The main idea is to calculate the kd-tree median value 

using the median noise. Comode [8] used the exponential mechanism to calculate when the kd-tree was used. [12] used H-tree 

to divide data and allocate less privacy budget to noise count. On the contrary, the median is given more budget, but this 

method is not suitable for big datasets. Efficiency and utility are both very important thing when differential privacy is used to 

network data, but most methods rarely consider efficiency. Therefore, this paper hopes to improve efficiency as much as 

http://www.ijpe-online.com/
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possible under the premise of ensuring utility. Chen [13] proposed an exploration and reconstruction algorithm based on 
density where the adjacency matrix of the graph is divided into multiple disjoint sub-regions. Then, noise is added, and finally 

the exponential mechanism is used for reconstruction. However, this method has a high runtime cost in data division. 

Sampling can reduce a certain extent cost, but, at the same time, it would also affect the accuracy of Algorithm. Therefore, this 

paper proposes a method for flattening kd-tree, which can greatly improve efficiency while maintaining utility. 
 

2. Preliminaries 
 

Let 𝒟1 and 𝒟2 be two adjacent datasets, that is, 𝒟1 and 𝒟2 are different only in one record, and are written as ‖𝒟1 −
𝒟2‖ = 1 . Then, two techniques are used to implement ϵ -differential privacy: the Laplace mechanism [14] and the 

Exponential mechanism [15]. it has the following definition. 
 

Definition 1 (𝛜-Differential Privacy). There is a random algorithm 𝒜 that satisfies any possible output O ∈ Range(𝒜) 

for any two datasets 𝒟1  and 𝒟2  (i.e.  ‖𝒟1 − 𝒟2‖ = 1 ), Pr[𝒜(𝒟1) ∈ O] ≤ 𝑒𝜖 × Pr[𝒜(𝒟2) ∈ O] , Then, the random 

algorithm 𝒜 satisfies the ϵ-differential privacy.  
 

Definition 2 (Global Sensitivity). For any two datasets 𝒟1 and 𝒟2, the global sensitivity of the function 𝑓: D → ℝ𝑑 is 

GS(𝑓) = max
𝒟1 ,𝒟2

‖𝑓(𝒟1) − 𝑓(𝒟2)‖. 

 

Definition 3 (Laplace mechanism). For any function f: D → ℝ𝑑 , mechanism 𝒜 : 𝒜(𝐷) = 𝑓(𝐷) +
𝐿𝑎𝑝𝑙𝑎𝑐𝑒(𝐺𝑆(𝑓) 𝜖⁄ ). 

 

Definition 4 (Exponential mechanism). Given a utility function q: (𝐷 × ℛ) → ℝ , mechanism 𝒜 : 𝒜(𝐷, 𝑞) =

{𝑟𝑒𝑡𝑢𝑟𝑛 𝑟 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∝ 𝑒𝑥𝑝 (
𝜖𝑞(𝐷,𝑟)

2𝐺𝑆(𝑞)
)}. 

 

In some different cases, the privacy budget ϵ will also have different calculation schemes. According to paper [16], there 

are the following two theorems. 
 

Theorem 1. A series of mechanisms 𝒜𝑖 provide 𝜖𝑖-differential privacy, respectively, then the mechanism 𝒜𝑖(𝐷) on 

dataset 𝐷 satisfies ∑ 𝜖𝑖-differential privacy. 
 

Theorem 2. If a series of datasets 𝐷𝑖 do not intersect, a series of mechanisms 𝒜𝑖  provide 𝜖𝑖-differential privacy, 

respectively, to satisfy max(𝜖𝑖)-differential privacy. 
 

To facilitate the calculation of the regional density, the counting matrix [13] is introduced. 
 

Definition 5 (Counter Summary Matrix). Given the adjacency matrix A of the simple graph G = (𝑉, 𝐸), the count 

summary matrix C of A is a matrix of |𝑉| × |𝑉|, where ∀1 ≤ i, j ≤ |𝑉|, C[𝐼, 𝐽] is equal to the number of 1 in the region 

A[1, 𝑖; 1, 𝑗], that is C[𝑖, 𝑗] = ∑ ∑ 𝐴𝑚𝑙
𝑗
𝑙=1

𝑖
𝑚=1 = 𝐶[𝑖 − 1, 𝑗 − 1] + C[𝑖, 𝑗 − 1] − C[𝑖 − 1, 𝑗 − 1] + 𝐴𝑖𝑗. If i < 1 or j < 1, then 

C[𝑖, 𝑗] = 0. 
 

The density of A[𝑘, 𝑙; 𝑚, 𝑛] is  
 

den(𝐴) = {𝐶[𝑙, 𝑛] − C[𝑙, 𝑚 − 1] − C[𝑘 − 1, 𝑛] + C[𝑘 − 1, 𝑚 − 1]} (𝑛 − 𝑚 + 1)(𝑙 − 𝑘 + 1) ⁄  
 

Spatial decomposition is the division of data into smaller areas or fewer points, it can be divided into two categories: 

data-independent and data-dependent. Cormode [8] proposed a flattening kd-tree in order to better compare the utility of 

quadtree and kd-tree (shown in Figure 1), flattening kd-tree decomposition is divided into two steps: the adjacency matrix is 

divided into two parts in the horizontal direction; then the two parts are vertically divided to obtain four areas, as shown in 

Figure 1. Each split of the flattening kd-tree is constructed using two kd-tree segmentation methods. In the lower right area 

of the two figures, the effect of the apparently flattening kd-tree is better than the quadtree. 

 

3. Decomposition and Reconstruction 

 

Based on the analysis in Section III, this paper proposes DRF. The whole process can be divided into four steps. 
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(a) Flattening kd-tree            (b) Quadtree 

Figure 1. Flattening kd-tree and quadtree 

      

Step1. Adjusting Vertex Labeling. In order to reduce the error of decomposition and reconstruction, the data should 

form dense regions and sparse regions in the adjacency matrix. This step adjusts the vertex labeling to form dense and 
sparse areas in the adjacency matrix. The detailed process is shown in algorithm 1. 

 
Algorithm 1 Adjusting_vertex_labeling 

Input: The original graph G 

Output: Adjacency matrix A 

1. Generate a random vertex labeling ℒ 

2. i = 0; 

3. while i < t: 

4.     Generate a candidate set 𝒩 of swaps; 

5.     for (𝑣𝑚, 𝑣𝑛) in 𝒩: 

6.         if (𝑑𝑒𝑔𝑟𝑒𝑒𝑚 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑛) ∙ (|𝑣𝑚 − ⌈
|𝑉|

2
⌉| − |𝑣𝑛 − ⌈

|𝑉|

2
⌉|) > 0: 

7.             exchange labeling(𝑣𝑚, 𝑣𝑛); 

8.            remove (𝑣𝑚, 𝑣𝑛) in 𝒩; 

9. i++ 

Return ℒ̅ 

 

Definition 6 For the graph G = (𝑉, 𝐸), the corresponding center point in the adjacency matrix is (⌈
|𝑉|

2
⌉ , ⌈

|𝑉|

2
⌉), and a set of 

labeling is measured by the following formula:  

 

𝑞(ℒ) = ∑ 𝐴𝑖𝑗 ∙ (|𝑖 − ⌈
|𝑉|

2
⌉| + |𝑗 − ⌈

|𝑉|

2
⌉|)

|𝑉|

𝑖,𝑗

 (1) 

 

Theorem 3 If (𝑣𝑚 , 𝑣𝑛) vertex pairs are satisfied  

 

(𝑑𝑒𝑔𝑟𝑒𝑒𝑚 − 𝑑𝑒𝑔𝑟𝑒𝑒𝑛) ∙ (|𝑣𝑚 − ⌈
|𝑉|

2
⌉| − |𝑣𝑛 − ⌈

|𝑉|

2
⌉|) > 0 (2) 

 

Figure 2 shows the effect of process 1 of the data set p2p-Gnutella08 (described in section 4 about p2p-Gnutella08). It 

can be seen that after processing, it is as close as possible to the center point in the adjacency matrix. In each iteration of the 

whole process, each point involves only one exchange, and each iteration only needs to exchange ⌈
|𝑉|

2
⌉ times. So, the time 

complexity is O(|𝑉|). 

 

       
(a) Before adjustment                               (b) After adjustment 

Figure 2. Effect of Algorithm 1 

 

Step2. Decomposition. The privacy budget 𝜖𝐷 is divided into two parts 𝜖𝐷
𝑑 and 𝜖𝐷

𝑐  (line 2). 𝜖𝐷
𝑑  is the privacy 

budget for finding the decomposition point, and 𝜖𝐷
𝑐  is the budget for calculating the noise count. For the split point budget 
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𝜖𝐷
𝑑, flattening kd-tree decomposition is divided into two steps (shown in algorithm 2). When the maximum height of 𝒦𝒯 is 

ℎ𝑚𝑎𝑥, for each split, the split point budget is 
𝜖𝐷

𝑑

2ℎ𝑚𝑎𝑥
. For the noise count budget 𝜖𝐷

𝑐 , because of the nature and form of the 

flattening kd-tree, a standard quadtree geometry budget scheme can be used [8]. In a quadtree with a maximum height of 

ℎ𝑚𝑎𝑥, the node with depth i has a privacy budget 2𝑖/3( √2
3

− 1)𝜖𝐷
𝑐 (2

(ℎ𝑚𝑎𝑥+1)

3 − 1)⁄ . 

 

Then, calculate the maximum height of the flattening kd-tree (line 4). For a standard quadtree, the area of the leaf area 

is 
|𝑉|2

4ℎ𝑚𝑎𝑥
. Based on the error considerations, the size of the leaf area is greater than μ times the noise standard deviation, so 

|𝑉|2

4ℎ𝑚𝑎𝑥
≥

𝜇√2𝐺𝑆(𝑓)

𝜖
=

𝜇√2𝐺𝑆(𝑓) ∗ (2(ℎ𝑚𝑎𝑥+1)/3 − 1)

2ℎ𝑚𝑎𝑥/3( √2
3

− 1)𝜖𝐷
𝑐

⟹    √2
3

(2ℎ)2 − (2ℎ)5/3 ≤
( √2

3
− 1)|𝑉|2𝜖𝐷

𝑐

𝜇√2𝐺𝑆(𝑓)
 

  

(3) 

Where 𝐺𝑆(𝑓) is the sensitivity of the noise count and 𝐺𝑆(𝑓) = 1. If the graph G = (𝑉, 𝐸) and the noise count budget 

𝜖𝐷
𝑐  are given, and ℎ𝑚𝑎𝑥 is an integer, ℎ𝑚𝑎𝑥 can be calculated by the inequality. For the decomposition of lines 9 to 15, in 

order to separate dense areas and sparse areas, region density is introduced.  

 
Algorithm 2 Decomposition 

Input: Adjacency matrix A 

Input: Privacy budget 𝜖𝐷  

Output: Noisy flattening kd-tree 𝒦𝒯 

1. i = 0; 

2. 𝜖𝐷 = 𝜖𝐷
𝑑 + 𝜖𝐷

𝑐  

3. 𝒦𝒯 → ∅; 

4. Calculate the max height ℎ𝑚𝑎𝑥  of 𝒦𝒯; 

5. while i < ℎ𝑚𝑎𝑥: 

6.     if i = 0: 

7.         Root node representing A in 𝒦𝒯; 

8.     while node v ∉ leaf: 
9.         Generate candidate regions for split points 

10.         Finding the split point for the first time; 

11.         Decomposition (𝑣, 𝜖𝐷
𝑑) → two subregions ℛ1, ℛ2; 

12.         for each R ∈ ℛ1, ℛ2 : 

13.             Generate candidate regions for split points 

14.             Finding the split point for the second time; 

15.             Decomposition (𝑅, 𝜖𝐷
𝑑 ) → two subregions ℛ1

′ , ℛ2
′ ; 

16.             for each ℛ1
′ , ℛ2

′ : 

17.                 Calculate NoisyCount(ℛ′, 𝜖𝐷
𝑐 ); 

18.                 a node u representing ℛ′ in 𝒦𝒯; 

19.                 if u = stop conditon: 

20.                     u is a leaf 

21. i + + 

Return 𝒦𝒯 

 

Definition 5 (Region density): For the region  R ⊆ A(𝐺), the size is |𝑅| = 𝑚 × 𝑙, then its region density is defined as 

den(R) = ∑ ∑ 𝐴𝑖𝑗/ml𝑙
𝑗=1

𝑚
𝑖=1 . So, the utility function in exponential mechanism looks like this: 

 

𝑞(𝑅, 𝑝) = 𝑚𝑎𝑥
∀𝑅′∈𝑅

(𝑑𝑒𝑛(𝑅′)) − 𝑚𝑖𝑛
∀𝑅′∈𝑅

(𝑑𝑒𝑛(𝑅′)) (4) 

 

Where 𝑅′ is a sub-area obtained from the region 𝑅 according to the division point 𝑝. By using this formula, two 

sub-regions with the largest difference in density can be obtained, that is, dense regions and sparse regions can be obtained 

as much as possible. 

 

Assuming that the area of the sub-region 𝑅′ is 𝑆′, the sensitivity is GS(𝑞) =
1

𝑆′. So, limiting the area of the sub-area 

can reach a lower sensitivity. Therefore, the area of the leaf region 𝑅′ is limited to 1/4 of the original region R area S (the 

9th row), and the sensitivity becomes GS(𝑞) =
4

𝑆
. Therefore, for each decomposition, the split point is limited to the 

1

4
~

3

4
 

region of the edge, and the area of the leaf region for the original region is at least 
𝑆

16
. Then, select the split point according 

to the following formula: 
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𝑒𝑥𝑝 (
𝜖𝐷

𝑑

2 × 2ℎ𝑚𝑎𝑥𝐺𝑆(𝑞)
𝑞(𝑅, 𝑝𝑖)) ∑ 𝑒𝑥𝑝 (

𝜖𝐷
𝑑

2 × 2ℎ𝑚𝑎𝑥 𝐺𝑆(𝑞)
𝑞(𝑅, 𝑝𝑗))

𝑝𝑗∈𝒫
⁄  (5) 

 

The purpose of the decomposition is to get the dense and sparse areas as much as possible, so three stop conditions (line 

20) are set in the Decomposition section: Dense area, Sparse zone, Reach the maximum height ℎ𝑚𝑎𝑥. 
 

For the first condition, the area density is used to determine whether a region forms a dense region. If the area density 

den(𝑅) ≥ 80% of an area, it is not necessary to decompose again. For the determination of the sparse zone, the noise count is 

used to judge. According to [13], the threshold is set to 80% of the minimum area 
|𝑉|2

4ℎ𝑚𝑎𝑥+1 of the leaf area, that is, the noise 

count ≤ 80% ×
|𝑉|2

4ℎ𝑚𝑎𝑥+1 is determined to be a sparse area. For the third condition, the maximum height of the flattening 

kd-tree has been calculated previously, so the maximum height ℎ𝑚𝑎𝑥 is reached and the decomposition is stopped. 
 

It can be known from the analysis of the flattening kd-tree in Section II that the time complexity of the segmentation 

process is O(|𝑉|). 

 

Step3. Post Processing. In the previous step, due to the setting of the stop condition, some areas would stop decomposing 

in advance. So, the privacy budget for noise counting is not utilized. In this step, these problems would be solved. According 

to Theorem 1 and Theorem 2, the raw count represented by each child node is only related to the noise count of its parent and 

ancestor, and is independent of the rest of the nodes. Therefore, the noise count budget of the leaf node with depth 𝑖 < ℎ𝑚𝑎𝑥 

can be adjusted to  

 

∑ (2𝑖/3( √2
3

− 1)𝜖𝐷
𝑐 (2(ℎ𝑚𝑎𝑥+1)/3 − 1))⁄

ℎ𝑚𝑎𝑥

𝑖

 (6) 

 

and then its noise count is recalculated, while the total noise count budget 𝜖𝐷
𝑐  is unchanged. 

 

Step4. Reconstruction. In this step, the anonymized matrix 𝐴̃  would be obtained. For each leaf region, the 

reconstruction process is divided into two steps: the first step is to select the correct number that elements 1 in the 

reconstructed adjacency matrix 𝐴̃ that matches the element 1 in the original adjacency matrix A; The second step is to 

specifically assign the position of the element 1 in the adjacency matrix 𝐴̃ according to the score of the first step. In the first 

step, each region has a correct number of elements 1 in the reconstructed adjacency matrix 𝐴̃. For each region, the score is the 

matched number between the reconstructed adjacency matrix 𝐴̃ with the original adjacency matrix A. Let the leaf area raw 

count be c, the noise count be 𝑐̃, then the score q(𝑖)𝜖[0, 𝑚𝑖𝑛(𝑐, 𝑐̃)], and the sensitivity is 𝐺𝑆(𝑞) = 1. Then, the score is 

chosen by the exponential mechanism 𝑒𝑥𝑝 (
𝑞(𝑖)𝜖𝑅

2𝐺𝑆(𝑞)
) ∑ 𝑒𝑥𝑝 (

𝑞(𝑗)𝜖𝑅

2𝐺𝑆(𝑞)
)𝑚𝑖𝑛(𝑐,𝑐̃)

𝑗=0⁄ . 

 

For each region, the split point considered is only 𝑚𝑖𝑛(𝑐, 𝑐̃) + 1. In the second step, for each region, according to the 

score q in the first step, the positions of number of q are randomly selected in the position of the element 1 in the corresponding 

original matrix A, and the corresponding position in the corresponding anonymous adjacency matrix 𝐴̃ is set to 1. The 

remaining 𝑐̃ − 𝑞 are randomly selected from the 0 elements on the non-main diagonal in the corresponding region, which is 

set to 1 in the anonymous adjacency matrix 𝐴̃. 
 

DRF consists of four parts. In first step, no matter how the vertex label is adjusted, the characteristic and structure of the 

graph will not change. Therefore, no privacy budget is allocated in this part, and the time complexity is O(|𝑉|). For the 

Decomposition, the privacy budget 𝜖𝐷  is divided into two parts 𝜖𝐷
𝑑  and 𝜖𝐷

𝑐 . 𝜖𝐷
𝑑  is the privacy budget for finding the 

decomposition point, and 𝜖𝐷
𝑐  is the budget for calculating the noise count. Because each sub-region does not intersect, 

according to Theorem 1 and Theorem 2, it satisfies: 
 

𝜖𝐷 = 𝜖𝐷
𝑑 + 𝜖𝐷

𝑐 = ∑
𝜖𝐷

𝑑

2ℎ𝑚𝑎𝑥

+

ℎ𝑚𝑎𝑥

𝑖=0

∑
2𝑖/3( √2

3
− 1)𝜖𝐷

𝑐

2(ℎ𝑚𝑎𝑥+1)/3 − 1

ℎ𝑚𝑎𝑥

𝑖=0

 (7) 

 

In this part, due to the characteristic of the flattening kd-tree, the time complexity is only O(|𝑉|). The third part is based 

on the noise count after differential privacy, so there is no need to allocate a privacy budget and it will not affect the overall 
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result. The final step is Reconstruction. The whole process is based on an exponential mechanism with a privacy budget of 𝜖𝑅. 

Therefore, the DRF algorithm satisfies the differential privacy of the privacy budget ϵ = 𝜖𝐷 + 𝜖𝑅 = 𝜖𝐷
𝑑 + 𝜖𝐷

𝑐 + 𝜖𝑅. For the 

whole experiment, the distribution ratio of the privacy budget is 𝜖𝐷
𝑑 : 𝜖𝐷

𝑐 : 𝜖𝑅 = 3: 7: 3. 

 

4. Experiment 

 

In this section, DRF would be tested through a series of experiments. For reference, DRF will be compared with the DER 

algorithm of Chen [13], kd-h (kd-hybrid) of Cormode [8], Random in Degree Distribution, Degree Centrality and Cut Query. 

Random is, in the fourth step, without the exponential mechanism. 1 element is randomly arranged in the adjacency matrix. 

This experiment was done in Python on a 16GB RAM Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, and each data is averaged 

over multiple runs. 
 

Table 1 shows the time of processing four data sets using DRF at ϵ = 1. Figures 3 and 4 show the time comparison of 

DER and KD-H with DRF. The ordinates of the two figures are 𝑇(𝐷𝐸𝑅) 𝑇(𝐷𝑅𝐹)⁄  and 𝑇(𝑘𝑑 − ℎ) 𝑇(𝐷𝑅𝐹)⁄  respectively. It 

can be seen that DRF is very efficient, and it has good performances in the experiments. The time taken by kd-h is similar to 

DRF, and DER takes more time. Compared with DER, when the data is small or the step is large enough, the time spent is 

similar to DRF. However, as the amount of data increases, the increment of time spent is greater than the increment of the 

amount of data. For example, in the dataset CollegeMsg, the data amount of DER with step = 10 is twice that of step = 20, and 

the time is 4.72 times. This is very disadvantageous when DER deals with big data. 

 
Table 1. Datasets and Runtimes of DRF 

Datasets Nodes Edges Time(s) 

CollegeMsg 1899 20296 5.4165 

OpenFlights 2939 30501 14.2045 

 p2p-Gnutella04 10876 39994 195.8137 

p2p-Gnutella08 6301 20777 61.53489826 

 

 
Figure 3. Efficiency comparison 𝑇(𝑘𝑑 − ℎ) 𝑇(𝐷𝑅𝐹)⁄  

 

 
(a) CollegeMsg                 (b) OpenFlights                  (c) p2p-Gnutella04                 (d) p2p-Gnutella08                                                     

Figure 4. Efficiency comparison 𝑇(𝐷𝐸𝑅) 𝑇(𝐷𝑅𝐹)⁄  

 

The KL-divergence of DRF, kd-h, DER and Random under different privacy budgets is given in Figure 5. It can be seen 

that DRF has the best effect under different privacy budgets. Kd-h and DER are worse than DRF under various privacy 

budgets. Random has the worst performance because the fourth step is random. Although the difference between DER and 

DRF is not too much, DER takes much more time than DRF. If DER wants to improve efficiency, it will increase the step size. 

In Figure 6, DRF and kd-h are compared with DER for different step in KL-divergence. As the step size increases, the error of 

DER also increases. According to Figure 5(c), (d) and Figure 6(c), (d), in the case of large data, if DER wants to improve 

efficiency, it will use a large step size, and the utility will be poor. 

 
Figures 7 and 8 give various results of RRDC. DRF still has the best performance in different datasets, while DER does 

not perform well in RRDC. And if large steps are used to process large data, DER has the same problem that the error will 

increase further. Unexpectedly, Random performs well in DDRC and is similar to DRF. The reason is that RRDC is mainly 

affected by the second step Decomposition and the third step Post_Processing. Therefore, in ε = 1, DRF, kd-h, Random, and 

DRF-2 are given in Figure 9 (in the third step Post_Processing, DRF-2 only processes the noise count to the [0, S]). It can be 
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seen that DRF-2 performs significantly worse than DRF and RANDOM without the third step of improving accuracy. 
Therefore, when comparing DRF, kd-h, Random and DRF-2, the second step Decomposition of DRF and the third step 

Post_Processing are helpful for improving utility. 

 

 
(a) CollegeMsg                (b) OpenFlights               (c) p2p-Gnutella04              (d) p2p-Gnutella08 

Figure 5. KL-divergence vs. Privacy budget 

 

 
(a) CollegeMsg                     (b) OpenFlights                     (c) p2p-Gnutella04                  (d) p2p-Gnutella08 

Figure 6. KL-divergence vs. Step 

 

 
(a) CollegeMsg                  (b) OpenFlights                    (c) p2p-Gnutella04                   (d) p2p-Gnutella08 

Figure 7. RRDC vs. Privacy budget 

 

 
(a) CollegeMsg                       (b) OpenFlights                    (c) p2p-Gnutella04                 (d) p2p-Gnutella08 

Figure 8. RRDC vs. Step 

 

 
(a) CollegeMsg                      (b) OpenFlights                    (c) p2p-Gnutella04                   (d) p2p-Gnutella08 

Figure 9. DRF, Random, DRF-2 with RRDC 

 

For the cutting query, Table 2 gives the performance with ϵ = 1 for the four data sets under the query size of 0.2|𝑉|,
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0.4|𝑉|, 0.6|𝑉|, 0.8|𝑉|. Then, it compares the performance of DRF, kd-h, DER and RANDOM with ϵ = 1 and query size of 

0.2|𝑉| in Figure 10. As can be seen from Table III and Figure 10, DRF and kd-h perform well under various query sizes. 

Random performed poorly. DER performs well when the step is small, but in Figure 11, DER will have the same problems as 

KL-divergence and DDRC when it deals with large data sets with large steps. 

 

As can be seen from the whole experiment, DRF performs best both in terms of utility and efficiency. Kd-h is slightly 

worse than DRF in performance. At step = 1, the performance of the DER is comparable to that of the DRF, but it takes several 

times longer than the DRF. When improving efficiency, the performance of the DER will decrease as the step size increases. 

Therefore, DER is very disadvantageous when it deals with large data volumes. In the experiment, the performance of DRF, 

kd-h, Random and DRF-2 in RRDC were also compared. It can be seen that the third step Post Processing and the fourth step 

Reconstruction effectively improve the accuracy. Therefore, DRF can not only ensure the utility but also maintain high 
efficiency when dealing with large data volume or small data volume. 

 

Table 2. Error (𝑄𝑆,𝑇(𝐺)) in cut query 

Datasets 0.2|𝑉| 0.4|𝑉| 0.6|𝑉| 0.8|𝑉| 

CollegeMsg 0.01587 0.00947 0.00684 0.00554 

OpenFlights 0.01914 0.01888 0.01449 0.01035 

p2p-Gnutella04 0.00751 0.00658 0.00632 0.00589 

p2p-Gnutella08 0.01623 0.01466 0.01352 0.01158 

 

 
(a) CollegeMsg                    (b) OpenFlights                     (c) p2p-Gnutella04                  (d) p2p-Gnutella08 

Figure 10. Cut query vs. Privacy budget 

 

 
(a) CollegeMsg                    (b) OpenFlights                   (c) p2p-Gnutella04                  (d) p2p-Gnutella08 

Figure 11. Cut query vs. Step 

 

5. Conclusion 

 

A scheme for publishing anonymous graphs based on differential privacy is given in this article. In the first step, the adjacency 

matrix form is adjusted to dense and sparse areas as much as possible, which is beneficial for later partitioning and 

reconstruction. Second, a flattening kd-tree was introduced. When decomposing the adjacency matrix, the flattening kd-tree 

can effectively decompose the adjacency matrix. So, DRF is very advantageous when the amount of data is large. Then, there 
is post-processing. In this step, privacy budget is fully utilized. Finally, the adjacency matrix after anonymity is obtained by 

the adjusted flattening kd-tree 𝒦𝒯̃. Experiments show that DRF has a good performance in terms of degree distribution, 

degree of centrality and cutting query. At the same time, this paper also made a certain comparison in terms of efficiency. DRF 

has a great advantage in efficiency. In experiments with a large amount of data processing, DRF can not only ensure utility, 

but also have processing time advantages.  
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